Package: dampack 1.0.2.1000

David Garibay

dampack: Decision-Analytic Modeling Package

A suite of functions for analyzing and visualizing the health economic outputs of mathematical models. This package was developed with funding from the National Institutes of Allergy and Infectious Diseases of the National Institutes of Health under award no. R01AI138783. The content of this package is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The theoretical underpinnings of 'dampack''s functionality are detailed in Hunink et al. (2014) <doi:10.1017/CBO9781139506779>.

Authors:Fernando Alarid-Escudero [aut], Greg Knowlton [aut], Caleb W. Easterly [aut], David Garibay [ctb, cre], Mark Clements [ctb], Eva Enns [aut]

dampack_1.0.2.1000.tar.gz
dampack_1.0.2.1000.zip(r-4.5)dampack_1.0.2.1000.zip(r-4.4)dampack_1.0.2.1000.zip(r-4.3)
dampack_1.0.2.1000.tgz(r-4.4-any)dampack_1.0.2.1000.tgz(r-4.3-any)
dampack_1.0.2.1000.tar.gz(r-4.5-noble)dampack_1.0.2.1000.tar.gz(r-4.4-noble)
dampack_1.0.2.1000.tgz(r-4.4-emscripten)dampack_1.0.2.1000.tgz(r-4.3-emscripten)
dampack.pdf |dampack.html
dampack/json (API)
NEWS

# Install 'dampack' in R:
install.packages('dampack', repos = c('https://darth-git.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/darth-git/dampack/issues

Datasets:

On CRAN:

8.30 score 34 stars 148 scripts 658 downloads 24 exports 42 dependencies

Last updated 2 months agofrom:0430fee8b8. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxOKOct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:beta_paramscalc_evpicalc_evppicalc_evsicalc_exp_losscalculate_icerscalculate_icers_psaceaccreate_dsa_onewaycreate_dsa_twowaydirichlet_paramsgamma_paramsgen_psa_samplnorm_paramsmake_psa_objmetamodelnumber_ticksowsaowsa_opt_stratowsa_tornadorun_owsa_detrun_psarun_twsa_dettwsa

Dependencies:assertthatclicolorspacecpp11dplyrellipsefansifarvergenericsggplot2ggrepelgluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RColorBrewerRcpprlangscalesstringistringrtibbletidyrtidyselecttriangletruncnormutf8vctrsviridisLitewithr

Basic Cost Effectiveness Analysis

Rendered frombasic_cea.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2024-09-13
Started: 2019-10-02

Deterministic Sensitivity Analysis: Generation

Rendered fromdsa_generation.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2024-09-13
Started: 2019-09-26

Probabilistic Sensitivity Analysis: Analysis

Rendered frompsa_analysis.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2024-09-13
Started: 2019-09-26

Probabilistic Sensitivity Analysis: Generation

Rendered frompsa_generation.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2024-09-13
Started: 2019-09-26

Value of Information Analysis

Rendered fromvoi.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2024-09-13
Started: 2019-09-26

Readme and manuals

Help Manual

Help pageTopics
Calculate alpha and beta parameters of beta distribution.beta_params
Expected Value of Perfect Information (EVPI)calc_evpi
Estimation of the Expected Value of Partial Perfect Information (EVPPI) using a linear regression metamodel approachcalc_evppi
Calculate Expected Value of Sample Information (EVSI)calc_evsi
Calculate the expected loss at a range of willingness-to-pay thresholdscalc_exp_loss
Calculate incremental cost-effectiveness ratios (ICERs)calculate_icers
Calculate incremental cost-effectiveness ratios from a 'psa' object.calculate_icers_psa
Cost-Effectiveness Acceptability Curve (CEAC)ceac
Create one-way deterministic sensitivity analysis objectcreate_dsa_oneway
Create one-way deterministic sensitivity analysis objectcreate_dsa_twoway
Calculate alpha parameters of Dirichlet distribution.dirichlet_params
Sample PSA data for testingexample_psa
Sample PSA data for testingexample_psa_obj
Calculate shape and scale (or rate) parameters of a gamma distribution.gamma_params
Generate PSA Samplegen_psa_samp
Sample deterministic data for testinghund_strat
Calculate location and scale parameters of a log-normal distribution.lnorm_params
Create a PSA objectmake_psa_obj
Linear regression metamodelingmetamodel
Number of ticks for 'ggplot2' plotsnumber_ticks
One-way sensitivity analysisowsa
plot the optimal strategy as the parameter values changeowsa_opt_strat
Tornado plot of a one-way sensitivity analysisowsa_tornado
Plot of Expected Value of Perfect Information (EVPI)plot.evpi
Plot of Expected Value of Partial Perfect Information (EVPPI)plot.evppi
Plot of Expected Value of Sample Information (EVSI)plot.evsi
Plot of Expected Loss Curves (ELC)plot.exp_loss
Plot of ICERsplot.icers
Plot a sensitivity analysisplot.owsa
Plot the psa objectplot.psa
Two-way sensitivity analysis plotplot.twsa
Predict from a one-way or two-way metamodelpredict.metamodel
Print metamodelprint.metamodel
print a psa objectprint.sa
Sample PSA datasetpsa_cdiff
Random number generation for the Dirichlet distribution with parameter vector alpha.rdirichlet
Run deterministic one-way sensitivity analysis (OWSA)run_owsa_det
Calculate outcomes for a PSA using a user-defined function.run_psa
Run deterministic two-way sensitivity analysis (TWSA)run_twsa_det
Summary of metamodelsummary.metamodel
summarize a psa object across all simulationssummary.psa
Two-way sensitivity analysis using linear regression metamodelingtwsa